## Patent-Anmeldung der DBHD Endlager Methode nach 7 Jahren Dekuktion.

Es ist soweit, - die DBHD Endlager Methode wurde zum Patent angemeldet!

Damit geht ein Auswahl-Verfahren für eine Methode erfolgreich zu Ende, die 7 Jahre intensivster, schöpferischer, fleissiger Arbeit gefordert hat. Das es so viel Kraft kosten würde! war am Anfang nicht absehbar, - allerdings war mir schon bewusst, dass die Lösung einer Bauplanungs-Aufgabe, für die weltweit seit 60 Jahren niemand eine sichere Methode gefunden hatte, nicht einfach werden würde, und genau das war mir Motivation genug, es endlich mal mit Konsequenz anzugehen, und den Weg bis zur sicheren Endlager-Planung vor-zu-zeichnen. Das DBHD so eindeutig gut gelungen ist, grenzt an ein Wunder.

Dekuktion, also ein Ausschluss-Verfahren, in dem alle hoffnungsvollen Ansätze miteinander verglichen wurden, bis man so viel über die einzelnen Methoden gelernt hatte, dass ein Ausschluss aus dem Verfahren notwendig wurde ... Um aus den Fehlern zu lernen, und noch bessere neue Ansätze zu finden, die eben diese Fehler vermeiden. In der Rückschau muss man sagen, dass DBHD aus der Auseinandersetzung mit den bereits alt-bekannten Ansätzen der Entsorgungsunternehmen, und den selber darüberhinaus gefundenen Ansätzen von GTKW, TTEL und ART-TEL entstand. - Quasi unter einem Verzweifelungs-Druck „ausgeschwitzt" wurde, sich „zwangsläufig aus den Erkenntnissen ergab", eine Art Geburt aus der Rationalität, die anfangs aufgrund Ihrer Neuheit auch für mich eher schwierig anzunehmen war, sich dann aber Stück für Stück als besonders sicher, und leider auch als besonders herausfordernd, und trotzdem in Summe als „erstaunlich effizient und kostengünstig" herausstellte. - Ein schöpferischer Auswahlprozess, der fast alle seine Kinder frass, und immer wieder ganz neue Herausforderungen mit sich brachte, und mich über 7 Jahre an der Grenze der möglichen Belastbarkeit forderten. Eine Qual, ein schmerzvolles immer wieder neu-machen, fleissigst durch die Mühen der Ebene, suchend und verwerfend, nach Informationen die darüber entschieden, ob es so oder anders weitergeht. Vom Nutzen des Zweifels. Ich danke allen Zweiflern, Helfern, Mitstreitern und Autoren der Wissenschaft, und Planverfassern der Vergangenheit. Ohne Eure Vorarbeiten wäre ich ja niemals so weit gekommen - bis zur DBHD Methode!

Etwa auf halber Strecke wurde mir klar, dass die Sicherheit eines Endlagers vor Allem vom Verschluss gewährleistet wird. Keine einfache Erkenntnis, da der Verschluss, je nach Szenario, in 15 bis 80 Jahren, also erst ganz am Ende baulich zugelassen wird - wer denkt schon gern ernsthaft über etwas nach, dass erst lange nach dem eigenen Tod stattfindet. Das kostet Überwindung. Endlager geht teilweise weit über die Vorstellungskraft des Menschen hinaus.

Das es einen gas-dichten Verschluss braucht, weil Korrosion Wasserstoff erzeugt, und dass IOD 129 Gas aus den Zirkaloy-Röhrchen so ewig aktiv bleibt!

Die Erkenntnis, dass der Verschluss nicht mit den bekannten Baumaterialien möglich ist, sondern nur mit dem Zulassen der Naturkräfte, war nicht einfach zu akzeptieren. Das es nicht schnell geht, sondern ein Menschleben lang Zeit braucht, - bis der Berg das tiefe warme Salz wieder zu Steinsalz gepresst hat.

Die alten Ideen der Entsorgungsunternehmen, wie Salzstock, untief und horiZontal, scheiterten daran, dass man es sich zu leicht machen wollte, und nicht zu Ende gedacht hat. - Jeder Salzstock faltet immer andere Geologien bei der Aufwölbung mit ein, hat zu wenig Deckgebirge / Sedimentüberdeckung und die „untiefen horizontalen Strecken sind niemals gas-dicht verschliessbar !" Die wenigen vermassten Konzeptionen habe ich nachgezeichnet, und nachgerechnet. Unglaublich teuer, aufgrund der vielen leeren Gänge. Der Faktor von aufgewältigtem Raum zu Einlagerungsvolumen lag bei 0.04 \% bis 0.4 \%. Die Nicht-Bauplaner sind in jeder Hinsicht auf Kleinkind-Niveau unterwegs.

Das GTKW hatte Anfangs eine DBD Wild-Lagerung, ohne Mehr-BarrierenSystem. - Zurückgestellt wurde das GTKW aber, weil der Kühlkasten aus Beton nicht gut genug war. Beton regiert gut auf Druck, aber leider nicht so gut auf Zug. - Die Fachleute wollten auch ein Nur-Endlager, und waren nicht bereit GTKW zu denken und verstehen. (Kein vernetztes Denken ...)

ART-TEL blieb ein Kompromiss. - Tief genug für einen Verschluss, aber im Bau und im Betrieb viel zu teuer. Jede Form von Rückholbarkeit bedeutet immer Mängel in der Sicherheit. ART-TEL war besser als alles zuvor jemals gedachte und geplante und trotzdem bei weitem nicht so gut wie DBHD.

DBHD ist viel sicherer als vom Gesetz gefordert, radikal einfach, erstaunlich effizient, und bleibt deshalb auf der Kostenseite immer sehr erträglich. Die Dezentralisierung entstand aus den thermischen Grenzen, führt aber auch dazu, dass man mit 1/8 Menge anfängt und nicht alles auf eine Karte setzt. DBHD schlägt alle anderen Planungen aus dem Feld, und dominiert sicher die nächsten 300 Jahre in der Endlagerung. - Es ist aber auch ein High-Tech Endlager-Bergwerk, ,,mit einer Baustelle, die eine Wasserkühlung braucht". Die DBHD Endlager Planung hat gewonnen und ist zum Patent angemeldet.

Vers. 0.0.2 / Jan. 2020
Volker Goebel / Dipl.-Ing.
Nucl. Repository Planner

Patent-Zeichnung DBHD Endlager von Dipl.-Ing. Volker Goebel
Ewige Sicherheit (Bergdruck-Verschluss in Steinsalz-SCHICHT)
Grundwasser

Zugangsbereich D 12

Sedimente
$\qquad$

Verschluss
Verschluss
aus Tiefe >
Temperatur
und Auflast-
(Berg-)Druck

Einlagerungs-
bereich D 20


Steinsalz

Methode zur sicheren Lagerung von nuklearen und chemischen Reststoffen in Geologie-SCHICHTEN, unter einem "gas-dichten Bergdruck-Verschluss".

Vertikale Schichtung von: Behältern, die in BetonPellets vergossen, zwischen Dehnungs-Fugen, in einer endlagerfähigen Geologie gelagert werden.

Entwicklungs-Zeitraum DBHD war: Sept. 2014 bis Jan. 2020 Diese Patent-Zeichnung zeigt das bereits gebaute Endlager! Die Baustellen-Zeichnungen enthalten ein Wasserkühl-System

Patent-Zeichnung DBHD Endlager von Dipl.-Ing. Volker Goebel
DBHD = Deep Big Hole Disposal = Tief Gross Loch Lagerung

